201 research outputs found

    The biological origin of linguistic diversity

    Get PDF
    In contrast with animal communication systems, diversity is characteristic of almost every aspect of human language. Languages variously employ tones, clicks, or manual signs to signal differences in meaning; some languages lack the noun-verb distinction (e.g., Straits Salish), whereas others have a proliferation of fine-grained syntactic categories (e.g., Tzeltal); and some languages do without morphology (e.g., Mandarin), while others pack a whole sentence into a single word (e.g., Cayuga). A challenge for evolutionary biology is to reconcile the diversity of languages with the high degree of biological uniformity of their speakers. Here, we model processes of language change and geographical dispersion and find a consistent pressure for flexible learning, irrespective of the language being spoken. This pressure arises because flexible learners can best cope with the observed high rates of linguistic change associated with divergent cultural evolution following human migration. Thus, rather than genetic adaptations for specific aspects of language, such as recursion, the coevolution of genes and fast-changing linguistic structure provides the biological basis for linguistic diversity. Only biological adaptations for flexible learning combined with cultural evolution can explain how each child has the potential to learn any human language

    Insect Brains Use Image Interpolation Mechanisms to Recognise Rotated Objects

    Get PDF
    Recognising complex three-dimensional objects presents significant challenges to visual systems when these objects are rotated in depth. The image processing requirements for reliable individual recognition under these circumstances are computationally intensive since local features and their spatial relationships may significantly change as an object is rotated in the horizontal plane. Visual experience is known to be important in primate brains learning to recognise rotated objects, but currently it is unknown how animals with comparatively simple brains deal with the problem of reliably recognising objects when seen from different viewpoints. We show that the miniature brain of honeybees initially demonstrate a low tolerance for novel views of complex shapes (e.g. human faces), but can learn to recognise novel views of stimuli by interpolating between or ‘averaging’ views they have experienced. The finding that visual experience is also important for bees has important implications for understanding how three dimensional biologically relevant objects like flowers are recognised in complex environments, and for how machine vision might be taught to solve related visual problems

    Spatial memory in the grey mouse lemur (Microcebus murinus)

    Get PDF
    Wild animals face the challenge of locating feeding sites distributed across broad spatial and temporal scales. Spatial memory allows animals to find a goal, such as a productive feeding patch, even when there are no goal-specific sensory cues available. Because there is little experimental information on learning and memory capabilities in free-ranging primates, the aim of this study was to test whether grey mouse lemurs (Microcebus murinus), as short-term dietary specialists, rely on spatial memory in relocating productive feeding sites. In addition, we asked what kind of spatial representation might underlie their orientation in their natural environment. Using an experimental approach, we set eight radio-collared grey mouse lemurs a memory task by confronting them with two different spatial patterns of baited and non-baited artificial feeding stations under exclusion of sensory cues. Positional data were recorded by focal animal observations within a grid system of small foot trails. A change in the baiting pattern revealed that grey mouse lemurs primarily used spatial cues to relocate baited feeding stations and that they were able to rapidly learn a new spatial arrangement. Spatially concentrated, non-random movements revealed preliminary evidence for a route-based restriction in mouse lemur space; during a subsequent release experiment, however, we found high travel efficiency in directed movements. We therefore propose that mouse lemur spatial memory is based on some kind of mental representation that is more detailed than a route-based network map

    A flexible component-based robot control architecture for hormonal modulation of behaviour and affect

    Get PDF
    This document is the Accepted Manuscritpt of a paper published in Proceedings of 18th Annual Conference, TAROS 2017, Guildford, UK, July 19–21, 2017. Under embargo. Embargo end date: 20 July 2018. The final publication is available at Springer via https://link.springer.com/chapter/10.1007%2F978-3-319-64107-2_36. © 2017 Springer, Cham.In this paper we present the foundations of an architecture that will support the wider context of our work, which is to explore the link between affect, perception and behaviour from an embodied perspective and assess their relevance to Human Robot Interaction (HRI). Our approach builds upon existing affect-based architectures by combining artificial hormones with discrete abstract components that are designed with the explicit consideration of influencing, and being receptive to, the wider affective state of the robot

    Dance Type and Flight Parameters Are Associated with Different Mushroom Body Neural Activities in Worker Honeybee Brains

    Get PDF
    Background: Honeybee foragers can transmit the information concerning the location of food sources to their nestmates using dance communication. We previously used a novel immediate early gene, termed kakusei, to demonstrate that the neural activity of a specific mushroom body (MB) neuron subtype is preferentially enhanced in the forager brain. The sensory information related to this MB neuron activity, however, remained unclear. Methodology/Principal Findings: Here, we used kakusei to analyze the relationship between MB neuron activity and types of foraging behavior. The number of kakusei-positive MB neurons was higher in the round dancers that had flown a short distance than in the waggle dancers that had flown a long distance. Furthermore, the amount of kakusei transcript in the MBs inversely related to the waggle-phase duration of the waggle dance, which correlates with the flight distance. Using a narrow tunnel whose inside was vertically or axially lined, we manipulated the pattern of visual input, which is received by the foragers during flight, and analysed kakusei expression. The amount of kakusei transcript in the MBs was related to the foraging frequency but not to the tunnel pattern. In contrast, the number of kakusei-positive MB neurons was affected by the tunnel patterns, but not related to foraging frequency. Conclusions/Significance: These results suggest that the MB neuron activity depends on the foraging frequency, whereas the number of active MB neurons is related to the pattern of visual input received during foraging flight. Our results sugges

    Strange Attractors in Dissipative Nambu Mechanics : Classical and Quantum Aspects

    Full text link
    We extend the framework of Nambu-Hamiltonian Mechanics to include dissipation in R3R^{3} phase space. We demonstrate that it accommodates the phase space dynamics of low dimensional dissipative systems such as the much studied Lorenz and R\"{o}ssler Strange attractors, as well as the more recent constructions of Chen and Leipnik-Newton. The rotational, volume preserving part of the flow preserves in time a family of two intersecting surfaces, the so called {\em Nambu Hamiltonians}. They foliate the entire phase space and are, in turn, deformed in time by Dissipation which represents their irrotational part of the flow. It is given by the gradient of a scalar function and is responsible for the emergence of the Strange Attractors. Based on our recent work on Quantum Nambu Mechanics, we provide an explicit quantization of the Lorenz attractor through the introduction of Non-commutative phase space coordinates as Hermitian N×N N \times N matrices in R3 R^{3}. They satisfy the commutation relations induced by one of the two Nambu Hamiltonians, the second one generating a unique time evolution. Dissipation is incorporated quantum mechanically in a self-consistent way having the correct classical limit without the introduction of external degrees of freedom. Due to its volume phase space contraction it violates the quantum commutation relations. We demonstrate that the Heisenberg-Nambu evolution equations for the Quantum Lorenz system give rise to an attracting ellipsoid in the 3N23 N^{2} dimensional phase space.Comment: 35 pages, 4 figures, LaTe

    Psychometric test of the Team Climate Inventory-short version investigated in Dutch quality improvement teams

    Get PDF
    Abstract BACKGROUND: Although some studies have used the Team Climate Inventory within teams working in health care settings, none of these included quality improvement teams. The aim of our study is to investigate the psychometric properties of the 14-item version of the Team Climate Inventory in healthcare quality improvement teams participating in a Dutch quality collaborative. METHODS: This study included quality improvement teams participating in the Care for Better improvement program for home care, care for the handicapped and the elderly in the Netherlands between 2006 and 2008. As part of a larger evaluation study 270 written questionnaires from team members were collected at baseline and 139 questionnaires at end measurement. Confirmatory factor analyses, reliability, Pearson correlations and paired samples t-tests were conducted to investigate construct validity, reliability, predictive validity and temporal stability. RESULTS: Confirmatory factor analyses revealed the expected four-factor structure and good fit indices. For the four subscales--vision, participative safety, task orientation and support for innovation--acceptable Cronbach's alpha coefficients and high inter-item correlations were found. The four subscales all proved significant predictors of perceived team effectiveness, with participatory safety being the best predictor. As expected the four subscales were found to be stable over time; i.e. without significant changes between baseline and end measurement. CONCLUSION: The psychometric properties of the Dutch version of the TCI-14 are satisfactory. Together these results show that the TCI-14 is a useful instrument to assess to what extent aspects of team climate influence perceived team effectiveness of quality improvement teams

    How Do Honeybees Attract Nestmates Using Waggle Dances in Dark and Noisy Hives?

    Get PDF
    It is well known that honeybees share information related to food sources with nestmates using a dance language that is representative of symbolic communication among non-primates. Some honeybee species engage in visually apparent behavior, walking in a figure-eight pattern inside their dark hives. It has been suggested that sounds play an important role in this dance language, even though a variety of wing vibration sounds are produced by honeybee behaviors in hives. It has been shown that dances emit sounds primarily at about 250–300 Hz, which is in the same frequency range as honeybees' flight sounds. Thus the exact mechanism whereby honeybees attract nestmates using waggle dances in such a dark and noisy hive is as yet unclear. In this study, we used a flight simulator in which honeybees were attached to a torque meter in order to analyze the component of bees' orienting response caused only by sounds, and not by odor or by vibrations sensed by their legs. We showed using single sound localization that honeybees preferred sounds around 265 Hz. Furthermore, according to sound discrimination tests using sounds of the same frequency, honeybees preferred rhythmic sounds. Our results demonstrate that frequency and rhythmic components play a complementary role in localizing dance sounds. Dance sounds were presumably developed to share information in a dark and noisy environment

    Spatial Orientation in Japanese Quails (Coturnix coturnix japonica)

    Get PDF
    Finding a given location can be based on a variety of strategies, for example on the estimation of spatial relations between landmarks, called spatial orientation. In galliform birds, spatial orientation has been demonstrated convincingly in very young domestic chicks. We wanted to know whether adult Japanese quails (Coturnix coturnix japonica) without food deprivation are also able to use spatial orientation. The quails had to learn the relation of a food location with four conspicuous landmarks which were placed in the corners of a square shaped arena. They were trained to find mealworms in three adjacent food cups in a circle of 20 such cups. The rewarded feeders were located during training between the same two landmarks each of which showed a distinct pattern. When the birds had learned the task, all landmarks were displaced clockwise by 90 degrees. When tested in the new situation, all birds redirected their choices with respect to the landmark shift. In subsequent tests, however, the previously correct position was also chosen. According to our results, quails are using conspicuous landmarks as a first choice for orientation. The orientation towards the previously rewarded location, however, indicates that the neuronal representation of space which is used by the birds also includes more fine grain, less conspicuous cues, which are probably also taken into account in uncertain situations. We also presume that the rare orientation towards never rewarded feeders may be due to a foraging strategy instead of being mistakes
    corecore